This is a blank page.
PB-Th-93 (LT2173)

Determination of Current Profiles in Flat Superconductors Using Hall Probe Array

Ryuji Kondoa, Toshihiro Shigea, Takeshi Fukamib, Tsuyoshi Tamegaic

aFac. of Engineering, Oita Univ., 700 Dannoharu Oita, Japan
bDepartment of Materials Science and Engineering, Himeji Institute of Technology, Himeji, Japan
cDepartment of Applied Physics, The University of Tokyo, Tokyo, Japan
Abstract: The current profiles in YBa$_2$Cu$_3$O$_7$ films when the magnetic field is perpendicular to the surfaces are studied. The current profiles are calculated from the field profiles, which are measured using a micro Hall-probe array. In this work we utilize a model, which has a spatial distribution of local current density. According to the model, the specimen is divided in two regions. One region, in which flux penetrates, has a constant current. The other is flux free and has a current distribution. This distribution is determined by one parameter “J_c”. Analyzing the measurement results using this model, the field profiles are reproduced well, in particular, at low external field.
Experiments

Sample: YBa$_2$Cu$_3$O$_7$
c-axis oriented epitaxial films
$T_c = 90$K
size 600x3800x0.8 μm3.

Micro Hall probe array:
Si doped GaAs
10 elements
10x10 μm2 active area

The sample is placed on the Hall probe array directly and the surface field is measured.
Measurements in increasing external field

The sample is cooled to 30 K at zero field and applied a dc field H. Fig. 3 and 4 show surface field measurements in increasing external field. The solid curves show calculated B.

Fig. 3 Profiles of flux-density B at $T = 30$ K. External field is increased from 0 Oe to 3080 Oe. The solid curves show calculated B at 20 μm distance from the sample surface.

Fig. 4 Profiles of flux-density B at low external field.
Critical state model to determine screening currents

We utilize a critical state model* having a spatial distribution of local current. In case: a thin strip has width $2a$ along x axis and \Box along y axis in an external field H_a, the sheet current $J(x)$ is

$$H_c = J_c / \pi$$

$$b = a / \cosh(H_a / H_c),$$

$$c \equiv (a^2 - b^2)^{1/2} / a = \tanh(H_a / H_c),$$

$$J(y) = \begin{cases}
\frac{2J_c}{\pi} \arctan \frac{cy}{(b^2 - y^2)^{1/2}} & |y| < b \\
J_c y / |y| & b < |y| < a,
\end{cases}$$

(1)

J_c is the only fitting parameter.

In $|x| < b$, there is no flux.

Measurements in decreasing external field

After keeping the external field at the maximum for one hour, it is decreased from 3040 Oe to 2320 Oe [Fig. 6].

Fig. 6 Profiles of flux-density B in decreasing external field. Closed circles show the experimental data for every 80 Oe. The solid curve shows calculated B.
Current density J in decreasing the external field

Fig. 7 shows estimated current profiles used for the calculation of Fig. 6. These current profiles are calculated by adding the initial current profile* to the profile derived from Eq. (1).

Fig. 7 Profiles of calculated current density J in decreasing the external field.

*The initial field profile, before decreasing the external field, cannot be reproduced by the uniform current profile. Therefore we adopt a model which $J_c (B)$ decays exponentially with B and then calculate the initial current profile.
In order to clarify the meaning of Fig. 7, we replot it after subtracting the initial local field from a present local field [Fig. 8]. These subtracted fields are reproduced quite well by the current profile derived from Eq. (1).

Conclusion

The current profile model, proposed by E. H. Brandt *et al.*, explains the experimentally obtained field profiles for both field-increasing and field-decreasing branches. This implicates the appropriateness of the model.